Álgebra

13. Lógica, conjuntos, números reales, ecuaciones e inecuaciones Proposición lógica, clases de proposiciones, operaciones: conjunción, disyunción, disyunción exclusiva, condicional (implicación), bicondicional (doble implicación), negación. Tautología, contradicción y contingencia. Leyes lógicas. Conjuntos: elementos, representación gráfica. Determinación de conjuntos: por extensión y por compresión, relación de pertenencia e inclusión. Conjuntos especiales: vacío, unitario, universal. Operaciones: unión, intersección, diferencia, y complemento. Propiedades. Conjunto potencia. Propiedades. Proposiciones y conjuntos: inclusión de conjuntos y la implicación; igualdad de conjuntos y doble implicación; complementación de conjunto y negación; intersección de conjuntos y conjunción; unión de conjuntos y disyunción; diferencia de conjuntos y conjunción y negación; diferencia simétrica de conjuntos y disyunción exclusiva. Cuantificadores. Conjunto de los números reales. Propiedades. Ecuación de primer grado con una variable. Inecuaciones de primer grado con una variable. Valor absoluto. Ecuaciones e inecuaciones con valor absoluto. Interpretación gráfica.

14. Ecuaciones e inecuaciones de segundo grado Ecuaciones de segundo grado con una variable. Propiedades. Interpretación geométrica. Ecuaciones bicuadradas y recíprocas. Ecuaciones e inecuaciones con radicales. Inecuaciones cuadráticas. Inecuaciones con dos variables. Inecuaciones de grado superior. Interpretación geométrica.

15. Funciones Función. Definición, dominio y rango. Propiedades. Representación gráfica. Composición de funciones. Funciones elementales (constante, lineal, afín, identidad). Funciones reales de una variable real. Funciones cuadrática, cúbica, valor absoluto, máximo entero, par, impar, inyectiva, sobreyectiva, monótona, homogénea, sucesión (f : N R). Operaciones con funciones reales: suma, resta, multiplicación, división. Función biyectiva, inversa de una función. Variación directa e inversa de dos variables. Función acotada. Determinación de funciones inversas mediante gráficas. Técnicas de graficación a partir de la gráfica de f para obtener la gráfica de y = ± f(± x + a) + b, y = f(| x |), y = | f(x) |

16. Funciones Polinomiales Polinomios (de una o más variables). Definición, igualdad de polinomios. Grado de un polinomio: grado absoluto y relativo. Polinomios especiales: homogéneos, completos, ordenados, idénticos, idénticamente nulos. Propiedades. Operaciones con polinomios: suma, resta, multiplicación y división. Productos notables y cocientes notables. Factorización. Radicación, racionalización de denominadores. Raíz cuadrada de un polinomio. Polinomio de una variable. Algoritmo de la división (método de Horner, método de Ruffini). Función polinomial, notación. MCD, MCM de polinomios. Raíces de una ecuación polinomial. Teorema del residuo y del factor. Raíces enteras y racionales de ecuaciones polinomiales. Conjunto de los números complejos. Representación geométrica. Forma rectangular, forma polar, forma exponencial. Módulos y argumentos. Operaciones con números complejos: suma, resta, multiplicación y división. Fórmulas de De Moivre. Raíces enésimas de un número complejo, gráficas. Polinomio complejo, teorema fundamental del Álgebra. Polinomios con coeficientes enteros, raíces reales y complejas y su descomposición en factores. Interpretación geométrica de las raíces complejas.

17. Función exponencial y logarítmica Función exponencial, propiedades, gráficas. Funciones logarítmicas, propiedades, gráficas. El número e. Sistemas de logaritmos. Ecuaciones exponenciales y logarítmicas. Inecuaciones exponenciales y logarítmicas.

Síguenos en FacebookMenu - 5Menu - 6

Precio inmejorable del mercado